
Designing and implementing a Hidden Markov Model to

predict stock prices

Brandon Sandhu July 19, 2024

Contents

1 Abstract 1

2 Theory 1
2.1 Markov Chains to Hidden Markov Models . 1
2.2 Optimising a Hidden Markov Model . 3

3 Implementation 4
3.1 Code Explanation . 4
3.2 Backtesting Results . 7

1 ABSTRACT 1

1 Abstract

Our work is primarily inspired by Renaissance Technologies, which aimed to develop system-
atic trading strategies using quantitative models based on mathematical and statistical analysis.
Founded in 1982 by mathematician and philanthropist James Harris Simons, Renaissance Tech-
nologies had its roots in Simons’ experience as a code breaker during the Cold War. Many of
his initial recruits for the firm were colleagues from his code-breaking days.

The Medallion Fund, renowned for its record-setting investment returns, has achieved an aver-
age annual return of 62% from its inception in 1988 until 2021. Although the specific strategies
employed by Medallion remain undisclosed due to perpetual non-disclosure agreements signed
by its employees, we can still make some educated guesses about their methods.

Given that Simons was a mathematical researcher for much of his life, his approach centered
around research. Consequently, many of his recruits were academics holding PhDs or other
advanced qualifications. One of the first recruits was Leonard Baum, who was with the com-
pany for only two years. Baum’s joint development of the Baum-Welch algorithm sparked
the initial types of models used at Renaissance Technologies. The Baum-Welch algorithm is a
type of expectation-maximising algorithm that finds the most probable parameters of a Hidden
Markov Model. By recognising this connection between Baum and Renaissance, we begin with
the theory of Hidden Markov Models and explore how they can be used to forecast stock market
prices.

2 Theory

We begin by describing the general setup of a Hidden Markov Model and how it can be used to
forecast future events. We follow the approach outlined in Aditya Gupta [1] but may include
further details for a sounder understanding.

2.1 Markov Chains to Hidden Markov Models

A Markov chain is a stochastic model that describes a sequence of possible events, assuming
that the probability of each event depends solely on the state of the preceding event. More
formally,

Definition 2.1. A Markov chain is a sequence {X0, X1, X2, . . . } of random variables, which
one thinks of as events in the above definition, that satisfies the Markov property which states

P(Xn+1 = xn+1 | X0 = x0, X1 = x1, · · · , Xn = xn) = P(Xn+1 = xn+1 | Xn = xn)

for all n ≥ 0, where {x0, x1, . . . , xn+1 ∈ S where S is the state space. It should be clear this
Markov property clearly encodes the idea that the probability of an event being in a certain
state depends only on the state of the previous event.

In the context of the stock market, trends generally follow historical data, with more recent
data weighing more heavily in predicting immediate future movements. Thus, we can see how
the Markov property could be a valuable tool for modeling stock prices.

2 THEORY 2

We can visualise a Markov chain as shown in Figure 1.

Bullish

BearishNeutral

0.3

0.2

0.4

0.1

0.2

0.1

0.5

0.40.8

Figure 1: An example of a Markov chain

We categorize market conditions into three states: bullish, bearish, and neutral, often referred
to as observation states. These states can be identified using technical indicators like the rel-
ative strength index (RSI). When leveraging a Markov chain to forecast the next likely state,
assuming the Markov property holds, we simply follow the arrow leading to the highest proba-
bility from the current state.

We can organize these probabilities into a matrix format. Each row of the matrix represents the
current state, and each column represents the next state. Assuming our state order as Bearish,
Bullish, and Neutral, the corresponding matrix would appear as follows,0.4 0.2 0.4

0.3 0.5 0.1
0.1 0.2 0.8.


This matrix is known as the transition matrix. It encapsulates the probabilities of moving from
one state to another, assuming adherence to the Markov property.

In our current Markov model, all states are observable. However, we can enhance this model by
introducing hidden states—variables that are not directly observed. These hidden states can
represent various factors such as market sentiment or hypothesized influences on the market.
The key requirement is to determine the number of these hidden states.

A hidden Markov model (HMM) aims to optimise the weighting of each hidden state based
on observed data patterns, typically through machine learning techniques. Once the model is
trained and optimised, similar to a regular Markov chain, we can use it to predict future states
in the market. We can visualise a hidden Markov model as shown below in Figure 2.

2 THEORY 3

S1 S2 S3

O1 O2 O3

a11

a12
a13

a21

a22
a23

a31
a32

a33

b11
b12 b13

b21
b22

b23

b31 b32
b33

Figure 2: An example of a hidden Markov model

The observation states are denoted by Oi and the hidden states are denoted by Si.

The transition matrix, as previously defined with an ordering of S1, S2, S3, is represented as
follows, a11 a12 a13

a21 a22 a23
a31 a32 a33.


In the hidden Markov model, our objective is to optimise the transition matrix based on the
observation data Oi. Additionally, the model incorporates hidden states and emission probabil-
ities, depicted as dotted arrows. These emission probabilities signify the likelihood of observing
Oi when the hidden state is Si. We can package these into a matrix too as follows,b11 b12 b13

b21 b22 b23
b31 b32 b33

 .

The matrix is called the emission matrix. In this matrix, each row corresponds to a specific
hidden state Si, while each column corresponds to an observed state Oi. In a typical hidden
Markov model, we also establish initial probabilities, which denote the likelihood of each ob-
served state occurring from a starting hidden state. However, in our specific case, we do not
need to define this because we are utilising historical stock data, which inherently serves as our
starting point.

Therefore, our hidden Markov model is completely determined by the pair (A,B) where A
denotes the transmission matrix and B denotes the emission matrix.

2.2 Optimising a Hidden Markov Model

Currently, our hidden Markov model is represented by the pair H = (A,B). However, before it
can effectively predict based on observed data, the model requires training. This is where the

3 IMPLEMENTATION 4

Baum-Welch algorithm becomes essential. Known as an expectation-maximization algorithm,
its formal objective is to find a local maximum for

θ∗ = argmaxAP(Y | H).

For detailed implementation specifics of the Baum-Welch algorithm, you can visit its Wikipedia
page at https://en.wikipedia.org/wiki/Baum-Welch algorithm. Essentially, the algorithm
is an iterative parameter optimisation method. In practice, Python packages are available that
automate the application of this algorithm, simplifying its implementation.

3 Implementation

We now use Python to implement and train a hidden Markov model to predict the next ticks
price given historically observed data.

3.1 Code Explanation

As demonstrated in the accompanying Jupyter notebook, we’ve developed a data scraper that
retrieves stock price data from TradingView. This scraper generates a CSV file containing
information on open, high, low, close, and volume data. We’ve encapsulated this functionality
in a function named GetStockData.

We begin by importing some key modules

1 import numpy as np

2 from hmmlearn.hmm import GaussianHMM

3 import pandas as pd

4 import matplotlib.pyplot as plt

5 from io import StringIO

numpy is a widely-used package for manipulating arrays of data.

hmmlearn specialises in hidden Markov models (HMMs), offering a Gaussian HMM varia-
tion that models observations (like stock prices) as Gaussian distributions.

pandas is a versatile package for managing data frames with multiple columns. It simpli-
fies tasks like displaying large datasets in a user-friendly format and supports basic statistical
operations and data manipulations such as differencing.

matplotlib is used for plotting our results.

StringIO is specifically employed to parse CSV data into a pandas dataframe, enhancing
data handling capabilities.

1 data = pd.read_csv(StringIO(GetStockData("NASDAQ:AAPL", 1, 210) [0]))

The provided code retrieves stock data for Apple over a 3-year period on a daily basis. It
captures the open, close, high, low and volume data. In our model we will consider all but
volume data.

3 IMPLEMENTATION 5

The exclusion of volume data immediately highlights a need for improvement, as volume plays
a crucial role in understanding current stock prices.

1 def features(dataframe):

2 CloseOpen = (dataframe[’Close ’]-dataframe[’Open’])/dataframe[’Open’]

3 HighOpen = (dataframe[’High’]-dataframe[’Open’])/dataframe[’Open’]

4 OpenLow = (dataframe[’Open’]-dataframe[’Low’])/dataframe[’Open’]

5 NewDataframe = pd.DataFrame ({’OpenClose ’: CloseOpen ,

6 ’HighOpen ’: HighOpen ,

7 ’LowOpen ’: OpenLow })

8 NewDataframe.set_index(dataframe.index)

9 return NewDataframe

10

11 def formatFeatures(dataframe):

12 return np.column_stack ((dataframe[’OpenClose ’], dataframe[’HighOpen ’

], dataframe[’LowOpen ’]))

The function features() computes fractional changes in market prices. Specifically, it cal-
culates the percentage change between pairs of variables: (Close, Open), (High, Open), and
(Low, Open). These changes are then organised into a new dataframe, which is subsequently
converted into an array format using the formatFeatures() function. This formatted array is
compatible with hmmlearn, facilitating its use in our hidden Markov model.

Another potential area for improvement could involve incorporating additional features to assess
whether they enhance the accuracy of our model.

1 trainSize = int (0.8* data.shape [0])

2

3 trainData = data.iloc [0: trainSize]

4 testData = data.iloc[trainSize +1:]

5

6 trainFeatures = features(trainData)

7 trainFeaturesFormatted = formatFeatures(trainFeatures)

8 model = GaussianHMM(n_components =10)

9 model.fit(trainFeaturesFormatted)

This code snippet forms the core of our models training phase. Initially, we allocate 80% of
our dataset for training the model, reserving the remaining data for future back-testing. Us-
ing previously defined functions, we extract observational features from the training data and
proceed to construct a hidden Markov model with 10 hidden states. The model.fit function
then employs the Baum-Welch expectation maximisation algorithm to optimise the transition
probabilities among these states.

Choosing an appropriate number of hidden states is crucial; too many may lead to overfit-
ting due to increased complexity and the need for more extensive training data.

An area for potential improvement involves experimenting with different numbers of hidden
states to ascertain which configuration yields more accurate predictions of stock prices. Fur-
thermore, while interpreting the meaning of each hidden state in market terms is challenging
due to numerous influencing factors, exploring these associations could provide deeper insights
into market dynamics.

3 IMPLEMENTATION 6

1 import itertools

2

3 OpenClose = trainFeatures[’OpenClose ’]

4 HighOpen = trainFeatures[’HighOpen ’]

5 OpenLow = trainFeatures[’LowOpen ’]

6

7 SampleSpaceOC = np.linspace(OpenClose.min(), OpenClose.max(), 50)

8 SampleSpaceHO = np.linspace(HighOpen.min(), HighOpen.max(), 10)

9 SampleSpaceOL = np.linspace(OpenLow.min(), OpenLow.max(), 10)

10

11 possibleOutcomes = np.array(list(itertools.product(SampleSpaceOC ,

SampleSpaceHO , SampleSpaceOL)))

Since our observation variable is continuous, we encounter the issue where P(Price = x1) = 0
with x1 ∈ [a, b]. To address this, we need to discretise our observation variables. The code above
handles this discretisation process, giving greater priority to the (Open, Close) percentage
increase over the other two observation variables, as this is the key aspect we aim to model. By
predicting an accurate percentage increase, we can calculate the next tick close price using the
formula Open Price × Predicted Percentage Increase = Next Tick Close Price. The
itertools package is utilised to perform a Cartesian product of all the observation variables,
generating a finite set of possible outcomes. In the code above, there will be 5000 such outcomes.

1 numLatentDays = 10

2 numDaysToPredict = 20

We define two key variables for our prediction model. The first is latency, which determines
the number of preceding days to include in our observation sequence. This sequence is used to
run the model and predict the subsequent output. The second variable is numDaysToPredict,
which specifies the number of days to backtest within the test data.

1 from tqdm import tqdm

2

3 predictedClosePrices = []

4 for i in tqdm(range(numDaysToPredict)):

5 # Calculate start and end indices

6 previousDataStartIndex = max(0, i - numLatentDays)

7 previousDataEndIndex = max(0, i)

8 # Acquire test data features for these days

9 previousData = formatFeatures(features(testData.iloc[

previousDataStartIndex:previousDataEndIndex]))

10

11 outcomeScores = []

12 for outcome in possibleOutcomes:

13 # Append each outcome one by one to see which sequence generates

the highest score

14 totalData = np.row_stack ((previousData , outcome))

15 outcomeScores.append(model.score(totalData))

16

17 # Take the most probable outcome as the one with the highest score

18 mostProbableOutcome = possibleOutcomes[np.argmax(outcomeScores)]

19 predictedClosePrices.append(testData.iloc[i][’Open’] * (1 +

mostProbableOutcome [0]))

This is our backtesting code. The module tqdm is used for debugging purposes; it dis-
plays the progress of the for loop, as this process can be time-consuming. We iterate through

3 IMPLEMENTATION 7

the numDaysToPredict variable, setting previousData to contain the features from the last
numLatentDays of the test data. By applying the model, which has been trained on historical
patterns, to this specific dataset, we can make accurate predictions for the subsequent days clos-
ing price. We then iterate through each possible outcome of the closing price and append the
one with the highest probability, effectively selecting the maximum emission from all previously
computed observation variables. Finally, the predicted close price is calculated by multiplying
the current day’s open price by the predicted (Close, Open) fractional change.

1 plt.figure(figsize =(30 ,10), dpi =80)

2 plt.rcParams.update ({’font.size’: 18})

3

4 xAxis = np.array(testData.index [0: numDaysToPredict], dtype=’datetime64[

ms]’)

5 plt.plot(xAxis , np.array(testData.iloc [0: numDaysToPredict][’Close’]), ’b

+-’, label="Actual close prices")

6 plt.plot(xAxis , predictedClosePrices , ’ro -’, label="Predicted close

prices")

7 plt.legend(prop={’size’: 20})

8 plt.show()

Here, we plot our predicted closing prices against the true closing prices for each day. We
observe a lag between the actual and predicted prices, indicating that the model struggles to
predict trend turning points before they occur. This suggests a limitation in our model. How-
ever, the model successfully follows the overall trend.

From this, we can conclude that while the model is not reliable for predicting specific stock
prices, it is effective in forecasting the general trend of a stock. This trend-following capability
could be valuable when used alongside other metrics to forecast future stock prices.

1 ae = abs(testData.iloc [0: numDaysToPredict][’Close’] -

predictedClosePrices)

2

3 plt.figure(figsize =(30 ,10), dpi =80)

4

5 plt.plot(xAxis , np.array(ae), ’go -’, label="Error")

6 plt.legend(prop={’size’: 20})

7 plt.show()

The above plot displays the absolute difference between the true and predicted prices, allow-
ing us to see how far off the models predictions are. Generally, the peaks in this plot correspond
to areas where the trend is changing. By minimising the errors at these peaks, we can reduce
the model’s inaccuracy during trend changes.

3.2 Backtesting Results

The date we collected this data is 18/07/2024at7 : 20GMT . We select the following parameters:
a 64-day time period for our testing data with 5-minute tick intervals. We train on the first
80% of the dataset and backtest on the remaining 20%. Due to running time constraints, we
backtest on the first 300 ticks of our testing dataset, which corresponds to 25 hours of trading
time. We use a latency of 25 ticks, equating to approximately 2 hours. Initially using 10 hidden
states, we produce the following result:

We also plot the absolute error differences

3 IMPLEMENTATION 8

Figure 3: Output of predictive model with parameters described above

Figure 4: Error of predictive model with parameters described above

We observe three main peak regions. Given that each trading day on the NASDAQ stock
exchange spans 6 hours and 30 minutes, we expect roughly three trading days to fit into the
25-hour backtesting window. These peaks correspond to the sudden price changes that occur
at the start of each trading day. Observe the errors during the trading days are relatively low
so we can instantly conclude that volatility of this stock is highest at the start of a trading day.
We tabulate the following error metrics

Max Error Min Error Average Error
0.237 0.013 0.113

REFERENCES 9

References

[1] Bhuwan Dhingra Aditya Gupta. Stock market prediction using Hidden Markov Models.
2012.

https://www.researchgate.net/publication/261261435_Stock_market_prediction_using_Hidden_Markov_Models

	Abstract
	Theory
	Markov Chains to Hidden Markov Models
	Optimising a Hidden Markov Model

	Implementation
	Code Explanation
	Backtesting Results

